

Biodet.

Laboratory Email

01707 284522

Biodet@herts.ac.uk

John Ware

Eco Green Cleaners Ltd

82 Gordian Way

Stevenage Hertfordshire

SG2 7QH

Ref:

EGC/12/1992 5th July 2012

Date:

Log No:

1992

Determination of the bactericidal activity against Legionella pneumophila

The tests were performed at the Biodet laboratories. University of Hertfordshire. Tests were conducted for Environmental Manufacturing Solutions, LLC / Eco Green Cleaners Ltd.

Identification of the sample

Products:

Xtreme, Agri-Complete & Blow-out

Batch number:

Xtreme 3767-11, Agri-Complete 3766-11, Blow-out 3665-11

Expiry date

Unknown

Manufacturer

Environmental Manufacturing Solutions, LLC

Date of delivery

June 2012

Storage conditions Room temperature

Active substance

Not indicated

Test method and its validation

Method

Membrane filtration

Neutralizer

Tap water (sterile)

Experimental conditions

Period of analysis

21 June 2012 to 28 June 2012

Appearance of the products

Colourless clear liquids

Product test concentration

Agri-Complete & Xtreme at 1.56%, Blowout at 10%

Test temperatures

20 C & 30C

Contact times

60 minutes

Interfering substances

0.000 5 w/v yeast extract

Product diluent

Hard water & buffered ferrous hard water

Stability of the test mixtures

Stable

Temperature of incubation

36C +/- 1C

Counting procedure

Membrane filtration

Bacterial strain used

NCTC 11192

Test results

See tables A.1 & A.2 to F.1 & F2

Conclusion

According to EN 13623 (2010), the June 2012 batch of Xtreme, Agri-Complete and Blowout, when diluted at 1.56%, 1.56% and 10% respectively in hard water and buffered ferrous hard water, possesses bactericidal activity against the reference strain of *Legionella pneumophila* serogroup 1, NCTC 11192.

R SMITH LAB DIRECTOR 5th July 2012 DATE

Table A.1 Verification of the methodology and validation of membrane filtration for the test concentration of 1.56% Xtreme using hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism					
	Bacterial test	Neutralization	Neutralizer	Method	Experimental
	suspension N	test suspension	toxicity	validation C	conditions A
		Nv	control B		
Legionella	33, 30 at	33, 30	24	27, 32	>165, >165
pneumophila	dilution of 10 ⁻⁶				
	(N = 3.15 x)	(Nv = 315)	B=24	(C = 29.5)	(A = > 165)
	10^{8})				
	_	$N_{v0} = 31.5$			
	$N_0 = 3.15 \times 10^7$				

Table A.2 Test Results Xtreme in hard water at 20 C

Test organism	Membrane filtration counts of test mixture at test concentration and contact time indicated cfu/ml					
	1.56% 0.52% 0.00156% 60 minutes 60 minutes					
Vc – values (Na ⁰)	<14, <14	<14, <14	>165, >165			
Legionella pneumophila (N _a)	<140	<140	>1650			
Calculation of lg reduction counts	7.50 - 2.15 = 5.35	7.50 - 2.15 = 5.35	7.50 - 3.22 = 4.28			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Xtreme at 1.56% (1/64) was found to be bactericidal at 20 C under the conditions of EN 13623 (2010).

Table B.1 Verification of the methodology and validation of membrane filtration for the test concentration of 1.56% Xtreme using buffered ferrous hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism			_		
	Bacterial test suspension N	Neutralization test suspension Nv	Neutralizer toxicity control B	Method validation C	Experimental conditions A
Legionella pneumophila	24, 27 at dilution of 10 ⁻⁶	24, 27	27, 26	27, 32	>165,>165
	$(N = 2.55 \text{ x} + 10^8)$	(Nv = 255)	B=26.5	(C = 29.5)	(A = >165)
	$N_0 = 2.55 \times 10^7$	$N_{v0} = 25.5$			

Table B.2 Test Results Xtreme in buffered ferrous hard water at 30 C

Test organism	Membrane filtration counts of test mixture at test concentration and					
	contact time indicated	contact time indicated cfu/ml				
	1.56%	1.56% 0.52% 0.00156%				
	60 minutes	60 minutes	60 minutes			
Vc – values (Na ⁰)	<14, <14	<14, <14	>165, >165			
Legionella pneumophila	<140	<140	>1650			
(N_a)						
Calculation of lg	7.41 - 2.15	7.41 - 2.15	7.41 - 3.22			
reduction counts	= 5.26	= 5.26	= 4.19			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Xtreme at 1.56% (1/64) was found to be bactericidal at 30 C under the conditions of EN 13623 (2010).

Table C.1 Verification of the methodology and validation of membrane filtration for the test concentration of 1.56% Agri-Complete using hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism					
	Bacterial test suspension N	Neutralization test suspension Nv	Neutralizer toxicity control B	Method validation C	Experimental conditions A
Legionella pneumophila	33, 30 at dilution of 10 ⁻⁶	33, 30	24	26	>165,>165
	$(N = 3.15 \text{ x} \\ 10^8)$	(Nv = 315)	B=24	(C = 26)	(A = >165)
	$N_0 = 3.15 \times 10^7$	$N_{v0} = 31.5$			

Table C.2 Test Results Agri-Complete in hard water at 20 C

Test organism	Membrane filtration counts of test mixture at test concentration and contact time indicated cfu/ml					
	1.56% 0.52% 0.00156% 60 minutes 60 minutes					
Vc – values (Na ⁰)	<14, <14	<14, <14	>165, >165			
Legionella pneumophila (N _a)	<140	<140	>1650			
Calculation of lg reduction counts	7.50 - 2.15 = 5.35	7.50 - 2.15 = 5.35	7.50 - 3.22 = 4.28			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Agri-Complete at 1.56% (1/64) was found to be bactericidal at 20 C under the conditions of EN 13623 (2010).

Table D.1 Verification of the methodology and validation of membrane filtration for the test concentration of 1.56% Agri-Complete using buffered ferrous hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism					
	Bacterial test suspension N	Neutralization test suspension Nv	Neutralizer toxicity control B	Method validation C	Experimental conditions A
Legionella pneumophila	24, 27 at dilution of 10 ⁻⁶	24, 27	27, 26	27, 32	>165, >165
	$(N = 2.55 \text{ x} \\ 10^8)$	(Nv = 255)	B=26.5	(C = 29.5)	(A = >165)
	$N_0 = 2.55 \times 10^7$	$N_{v0} = 25.5$			

Table D.2 Test Results Agri-Complete in buffered ferrous hard water at 30 C

Test organism	Membrane filtration counts of test mixture at test concentration and contact time indicated cfu/ml					
	1.56% 0.52% 0.00156% 60 minutes 60 minutes					
Vc – values (Na ⁰)	<14, <14	<14, <14	>165, >165			
Legionella pneumophila (N _a)	<140	<140	>1650			
Calculation of lg reduction counts	7.41 – 2.15 = 5.26	7.41 – 2.15 = 5.26	7.41 – 3.22 = 4.19			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Agri-Complete at 1.56% (1/64) was found to be bactericidal at 30 C under the conditions of EN 13623 (2010).

Table E.1 Verification of the methodology and validation of membrane filtration for the test concentration of 10% Blow-out using hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism					
	Bacterial test	Neutralization	Neutralizer	Method	Experimental
	suspension N	test suspension	toxicity	validation C	conditions A
		Nv	control B		
Legionella	33, 30 at	33, 30	24	27, 31	>165, >165
pneumophila	dilution of 10 ⁻⁶			-	
	(N = 3.15 x)	(Nv = 315)	B=24	(C = 29)	(A = > 165)
	10^{8})				
		$N_{v0} = 31.5$			-
	$N_0 = 3.15 \times 10^7$				

Table E.2 Test Results Blow-out in hard water at 20 C

Test organism	Membrane filtration counts of test mixture at test concentration and contact time indicated cfu/ml					
	10% 3.33% 0.01% 60 minutes 60 minutes					
Vc – values (Na ⁰)	<14, <14	42, 41	>165, >165			
Legionella pneumophila (N _a)	<140	415	>1650			
Calculation of lg reduction counts	7.50 - 2.15 = 5.35	7.50 - 2.62 = 4.88	7.50 - 3.22 = 4.28			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Blow-out at 10% was found to be bactericidal at 20 C under the conditions of EN 13623 (2010).

Table F.1 Verification of the methodology and validation of membrane filtration for the test concentration of 10% Blow-out using buffered ferrous hard water

Test	Colony counts (Vc-values per 0.1ml sample)				
organism		_	•		
	Bacterial test suspension N	Neutralization test suspension Nv	Neutralizer toxicity control B	Method validation C	Experimental conditions A
Legionella pneumophila	24, 27 at dilution of 10 ⁻⁶	24, 27	27, 26	27, 31	>165,>165
	$(N = 2.55 \text{ x} \\ 10^8)$	(Nv = 255)	B=26.5	(C = 29)	(A = >165)
	$N_0 = 2.55 \times 10^7$	$N_{v0} = 25.5$			

Table F.2 Test Results Blow-out in buffered ferrous hard water at 30 C

Test organism	Membrane filtration counts of test mixture at test concentration and					
	contact time indicated	contact time indicated cfu/ml				
	10%	10% 3.33% 0.01%				
	60 minutes	60 minutes	60 minutes			
Vc – values (Na ⁰)	<14, <14	>165, >165	>165, >165			
Legionella pneumophila (N _a)	<140	>1650	>1650			
Calculation of lg reduction counts	7.41 - 2.15 = 5.26	7.41 – 3.22 = 4.19	7.41 – 3.22 = 4.19			
$\lg R = \lg N_0 - \lg N_a$						

Conclusion

The product Blow-out at 10% was found to be bactericidal at 30 C under the conditions of EN 13623 (2010).

TEST DATA FOR XTREME

EFFICACY TEST DATA

Xtreme as a Disinfecting Detergent (EPA Manufacturing Facility Reg. No. 82859)

VIRUCIDAL DATA

Testing Methods

* U.S. E.P.A. Pesticide Assessment Guidelines, Subdivision G: Product Performance, 1982, Section 91-30, pp. 72-76.

† Virucide Assay (EPA, Federal Register 10, No. 123, 6/25/75, p. 26836)

. Protocols for Testing the Efficacy of Disinfectants against Hepatitis B Virus (HBV) (EPA, Federal Register, Vol., 65,

No. 166, 8/25/2000, p. 51828).

‡ Protocol for Testing Disinfectants against Hepatitis C Virus using Bovine Viral Diarrhea Virus as approved by the

U.S. EPA on August 15, 2002.

Test Conditions: 2 oz. Per gallon of water dilution, 10 minute contact time, tested in the presence of serum glass petri dish substrates

Results

Test Organism

Sample

Titer Reduction

†Adenovirus Type 2 A B 3.0 log₁₀ > 3.0 log₁₀

*Avian Influenza A Virus (H3N2) (Avian Ressortant) (ATCC VR-2072) A B >3.5 log10 >3.5 log10

*Avian Influenza Virus, Type A (Turkey/WIS/66) (H9N2) A B >4.5 log10 >4.5 log10

Bovine Viral Diarrhea Virus (BVDV) A B 6.1 log10 3.8 log10

*Feline Calicivirus (FCV) A B 5.79 log10 > 6.06 log10

.Hepatitis B Virus (HBV) (Duck Hepatitis B Virus-DHBV) A B 4.5 log10 4.5 log10

#Hepatitis C Virus (HCV) (Bovine Viral Diarrhea Virus-BVDV) A B 6.1 log10 3.8 log10

†Herpes Simplex Type 1 (Sabin) A B >4.0 log10 > 3.7 log10

*Human Coronavirus (ATCC VR-740, strain 229E) A B > 3.0 log10 > 3.0 log10

*Human Immunodeficiency Virus, HTLV-IIIRF, strain of HIV-1

(associated with AIDS)

A B > 3.0 log10 > 3.0 log10

†Influenza A2 (Japan 305/57) A B >6.5 log10 >6.0 log10

*Norovirus (Norwalk Virus) (FCV) A B 5.79 log10 >6.06 log10

*SARS Associated Coronavirus (ZeptoMetrix) A B 4.03 log10 4.03 log10

†Vaccinia (Wyeth) A B > 3.5 log10 > 3.5 log10

Conclusion

Under the conditions of this investigation, Xtreme Detergent/Disinfectant was **virucidal** for Adenovirus Type 2, Avian Influenza A Virus (H3N2), Avian Influenza Virus Type A (H9N2), Bovine Viral Diarrhea Virus

(BVDV), Feline Calicivirus (FCV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Herpes Simplex Type 1 (Sabin),

Human Coronavirus, Human Immunodeficiency Virus (HIV-1), Influenza A₂ (Japan 305/57), Norovirus (Norwalk

Virus), SARS Associated Coronavirus and Vaccinia (Wyeth) according to criteria established by the U.S. Environmental Protection Agency for registration and labeling of a disinfectant product as a virucide.

MILDEW FUNGISTATIC DATA

Testing Method

Hard Surface Mildew Fungistatic Test (Unofficial Protocol, 10/27/76)

Test Organism: Aspergillus niger (ATCC 6275)

Test Conditions: tile substrates

Results

Sample Dilution No. of Exposed Tiles No. of Tiles Showing Growth Xtreme Detergent/Disinfectant oz/gal 10 0 Control - 10 10

Conclusion

Under the conditions of this investigation, Xtreme Detergent/Disinfectant was **fungistatic** for *Aspergillus niger* according to criteria established by the U. S. Environmental Protection Agency for registration and labeling of a disinfectant product as a fungistat.

FUNGICIDAL DATA

Test Method

AOAC Fungicidal Test

Test Organism: *Trichophyton mentagrophytes* (ATCC 9533)

Test Conditions: 2 oz/gal dilution 5% organic soil load 20°C exposure temperature

Results

Exposure Time (min.) vs. Growth Sample 5 10 15 A B + + + 0 0 0 0 0 0

Conclusion

Under the conditions of this investigation, Xtreme Detergent/Disinfectant was **fungicidal** for *Trichophyton mentagrophytes* according to criteria established by the U. S. Environmental Protection Agency for registration and labeling of a disinfectant product as a fungicide.

DISINFECTION DATA

Test Method

AOAC Use Dilution

Test Conditions: 5% organic soil load, 10 minute contact time, stainless steel carrier substrates, 20°C exposure temperature, 2 oz/gal dilution

Results

No. of Carriers Test Organism Sample Exposed Positive Staphylococcus aureus (ATCC 6538) A В \overline{C} 60 60 60 0 0 0 Salmonella choleraesuis (ATCC 10708) A В \mathbf{C} 60 60 60 0 0 0

```
Pseudomonas aeruginosa (ATCC 15442) A
 В
C
 60
 60
 60
 0
0
0
Brevibacterium ammoniagenes (ATCC 6871) A
 10
 10
0
0
Enterobacter aerogenes (ATCC 13048) A
10
10
0
0
Escherichia coli (ATCC 11229) A
В
10
10
0
Klebsiella pneumoniae (ATCC 4352) A
В
10
10
Listeria monocytogenes (ATCC 984) A
В
10
10
Methicillin resistant Staphylococcus aureus (MRSA) (ATCC 33593) A
В
10
10
0
Salmonella schottmuelleri (ATCC 8759) A
10
10
0
0
```

```
Shigella dysenteriae (ATCC 12180) A
10
10
0
0
Streptococcus faecalis (ATCC 10541) A
В
10
10
0
0
Streptococcus pyogenes (Clinical-Flesh Eating Strain, BIRD M3) A
10
10
0
Streptococcus salivarius (ATCC 9222) A
В
10
10
0
Vancomycin intermediate resistant Staphylococcus aureus (VIRSA) A
В
10
10
0
0
```

Conclusion

Under the conditions of these investigations, Xtreme Detergent/Disinfectant demonstrated disinfectant activity against Staphylococcus aureus, Salmonella choleraesuis, Pseudomonas aeruginosa, Brevibacterium ammoniagenes, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Methicillin resistant Staphylococcus aureus (MRSA), Salmonella schottmuelleri, Shigella dysenteriae, Streptococcus faecalis, Streptococcus pyogenes (Clinical – Flesh Eating Strain, BIRD M3), Streptococcus salivarius and Vancomycin intermediate resistant Staphylococcus aureus (VIRSA) according to criteria established by the U. S. Environmental Protection Agency for registration and labeling of a disinfectant product as a bactericide.

SANITIZATION DATA

Test Method

AOAC Germicidal and Detergent Sanitizing Action of Disinfectants

Test Conditions: 200 ppm active quaternary 2 oz/3.5 gal dilution

Results

```
TOTAL BACTERIAL COUNTS/
 % KILL vs. EXPOSURE TIME
 Synthetic
Hard Water
 30 seconds
 60 seconds
Test Organism Sample (ppm) TBC * % Kill† TBC * % Kill†
Staphylococcus aureus
 (ATCC 6538)
 Α
В
\mathbf{C}
250
250
250
1120
1065
1275
99.999
99.999
99.999
65
70
185
99.999
99.999
99.999
Escherichia coli
(ATCC 11229)
Α
В
C
300
300
300
990
1215
1460
99.999
99.999
99.999
65
80
190
99.999
99.999
99.999
* TBC = Total Bacterial Count, cfu/ml
† % Kill calculated based on initial
inoculum control count of 75-125
```

x 106 cfu/ml.

Conclusion

Under the conditions of these investigations, Xtreme Detergent/Disinfectant demonstrated **sanitizing** activity against *Staphylococcus aureus* and *Escherichia coli* according to criteria established by the U. S. Environmental Protection Agency for registration and labeling of a disinfectant product as a sanitizer.

DERMAL SKIN TEST DATA

DERMAL IRRITATION TESTING DATA

Summary of Dermal Irritation Testing on Xtreme 01/10/07

The Method used in Protocol Design was the Modified Draize method as described in OECD Guidelines for the Testing of Chemicals, Sec. 404, Paris 1981 (revised: 1992)

In each animal, the sum of the skin values for erythema at 1, 24, 48 and 72 hours for exposed areas was added to the similar sum of the values for oedema formation. The primary irritation index for each animal was the sum of the two summary values divided by 3 (i.e. the average of the three readings). The primary irritation score and its standard deviation are the mean value and standard deviation of the primary irritation indices of the three animals.

A 0.5 mL portion of the test article Xtreme was topically applied to the intact skin of a group of three rabbits by patch application. The test article stayed in contact with the skin for a 4 hour period.

The test sites were evaluated at 1, 24, 48, and 72 hours following the exposure period. The test article Xtreme showed no erythema or oedema on all animals at one hour after the exposure period. At 24 hours after the exposure period, no erythema was observed on all animals. At 72 hours after the exposure period, no erythema was observed on all animals.

NOTE: Xtreme was applied at pure, undiluted strength.

Classification of Primary Irritation Scores:

0 - 0.9	Non-Irritant
1.0 - 1.9	Very Mild Irritant
2.0 - 3.9	Mild Irritant
4.0 - 5.9	Moderate Irritant
6.0 - 8.0	Severe Irritant

Based on these results, the test article was classified as follows:

Primary Irritation Score 0.3 ± 0.1

Classification: Non-

Non-Irritant

Based on the above findings, the test article is **not classified** according to the Transportation of Dangerous Goods Act.

Based on the above findings, the test article Xtreme is classified as **NON- IRRITANT** according to OSHA, US D.O.T. and the Canadian Transportation of Dangerous Goods Act testing protocols thus requires no PPE's as per 29CFR.

DERMAL EYE TEST DATA

Summary of Eye Irritation Testing/CFR 1500.42 on Xtreme 11/17/07

Herein referred to as Xtreme

The Method used in Protocol Design was the Draize method as described in OECD Guidelines for the Testing of Chemicals, Sec. 405, OPPTS 798.4500 Primary Eye Irritation, OPP 81-4 Acute Eye Irritation-Rabbit, and EPA report 540/09-82, 1982.

Six albino rabbits shall be used in accordance with CFR 1500.42. In each animal, the test material shall be placed into one eye of each rabbit. The eyelids shall then gently be held together for one second and then the rabbit shall be released. The grade of ocular reaction is recorded at 1, 24, 48 and 72 hours. The sum of the grade of ocular reaction shall then be added. The primary irritation index for each animal was the sum of the two summary values divided by 6 (i.e. the average of the three readings). The primary irritation score and its standard deviation are the mean value and standard deviation of the primary irritation indices of the three animals.

A 0.1 mL portion of the test article Xtreme was topically applied to the intact eyes of a group of six rabbits by placing the test material with a sterile dropper into the conjunctival sac of one eye of each rabbit by gently pulling the lower lid away from the eyeball.

The test sites were evaluated at 1, 24, 48, and 72 hours following the exposure period. The test article Xtreme showed no ocular reaction on all rabbits at 24 hrs hours after the exposure period. At 1 hour after exposure, no ulcerations or opacity were observed. However, slight redness was apparent in 1 of the 6 rabbits. At 24 hours after the exposure, no ulcerations or opacity were observed. The 1 rabbit that showed slight redness had essentially recovered 100% at this testing interval. At 48 hours after the exposure, no ulcerations or opacity were observed. At 72 hours after the exposures, no ulcerations or opacity were observed.

NOTE: Xtreme was applied at pure, undiluted strength.

Classification of Primary Irritation Scores:

0-7.0	Non-Irritant
7.1-5.0	Practically Non-Irritating
15,1-25.0	Slightly Irritating
25.1-50.0	Moderately Irritating
50.1-110.0	Severely Irritating/Corrosive

Based on these results, the test article Xtreme was classified as follows:

Primary Irritation Score 0.8 ± 0.1 Classification Non-Irritant

Based on the above findings, the test article Xtreme is not classified according to the US D.O.T. and the Canadian Transportation of Dangerous Goods Act.

References:

- (1) Buehler, E.V. and Newmann, E.A. A comparison of Eye Irritation in Monkeys and Rabbits. *Toxicology and Applied Pharmacology 6:701-710 (1964)*
- (2) Draize, J.H. et al. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. *Journal of Pharmacology and Experimental Therapeutics*. 83-377-390 (1944)

Avian Infectious Bronchitis virus Beaudette IB42 Avian Influenza A (H3N2) virus (Avian Reassortant) (ATCC VR-2072) Avian Influenza A (H5N1) virus Canine Coronavirus ATCC VR-809 Canine Distemper virus Feline Picornavirus	6.42 Log ₁₀ 6.5 Log ₁₀ 6.75 Log ₁₀ 4.75 Log ₁₀ 4.75 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 6.75 Log ₁₀	Did Comment	<=0.5 Log ₁₀	>=5.92 Log ₁₀ >=5.92 Log ₁₀ >=6.0 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.75 Log ₁₀ >=4.10 Log ₁₀ >=4.10 Log ₁₀ >=4.10 Log ₁₀ >=4.10 Log ₁₀ >=6.25 Log ₁₀
-2072) 309	6.5 Log ₁₀ 4.75 Log ₁₀ 6.75 Log ₁₀ 4.75 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀		<=0.5 Log ₁₀	>=5.92 Log ₁₀ >=6.0 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=6.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=6.25 Log ₁₀
-2072)	6.5 Log ₁₀ 4.75 Log ₁₀ 6.75 Log ₁₀ 4.75 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=6.0 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.5 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
-2072) 809	4.75 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=4.25 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.5 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
-2072) 809	4.75 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.25 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
809	6.75 Log ₁₀ 4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=4.25 Log ₁₀ >=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.25 Log ₁₀ >=6.25 Log ₁₀ >=05.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
809	6.75 Log ₁₀ 4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀		<=0.5 Log ₁₀	>=6.25 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.25 Log ₁₀ >=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
ATCC VR-809	4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.25 Log ₁₀ >=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
s ATCC VR-809	4.5 Log ₁₀ 4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=4.0 Log ₁₀ >=4.0 Log ₁₀ >=4.25 Log ₁₀ >=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀
irus	4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀ <=0.5 Log ₁₀ <=0.5 Log ₁₀ <=0.5 Log ₁₀	>=4.0 Log ₁₀ >=4.25 Log ₁₀ >=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
virus	4.75 Log ₁₀ 6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀	>=4.25 Log ₁₀ >=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
irus	6.25 Log ₁₀ 6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀ <=0.5 Log ₁₀ <=0.5 Log ₁₀	>=05.75 Log ₁₀ >=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
virus	6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀ <=0.5 Log ₁₀ <=0.5 Log ₁₀	>=5.75 Log ₁₀ >=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
	6.75 Log ₁₀ 4.5 Log ₁₀		<=0.5 Log ₁₀ <=0.5 Log ₁₀	>=6.25 Log ₁₀ >=4.0 Log ₁₀ >=4.0 Log ₁₀
	4.5 Log ₁₀		<=0.5 Log ₁₀ <=0.5 Log ₁₀	>=4.0 Log ₁₀ >=4.0 Log ₁₀
	K 7K 1 00		<=0.5 Log ₁₀	>=4.0 Log ₁₀
	5 75 1 00	1	5	PROPERTY OF STREET, ST
	J. 7 J LUY10	С	<=0.5 £09 ₁₀	>=5.25 Log ₁₀
	5.06 Log ₁₀	Α	<=0,27 Log ₁₀	>=4.79 Log ₁₀
Hepatitis B Virus	5.20 Log ₁₀	В	<=0.41Log ₁₉	>=4.79 Log ₁₀
	5.06 Log ₁₀	Confirmatory B	<=0.27 Log ₁₀	>=4.79 Log ₁₀
	6.21 Log ₁₀	Α	<=0.24 Log ₁₀	>=5.97 Log ₁₀
Hepatitis C Virus	6.21 Log ₁₀	В	<=0.42 Log ₁₀	>=5.79 Log ₁₀
	6.06 Log ₁₀	Confirmatory B	<=0.13 Log ₁₀	>=5.93 Log ₁₀
	5.5 Log ₁₀	Þ	<=0.5 Log ₁₀	>=5.0 Log ₁₀
Herpes Simplex Virus Type 1		В	<=0.5 Log ₁₀	>=5.0 Log ₁₀
	6.0 Łog ₁₀			>= & & I oo .

Xtreme raw material Base was evaluated in the presence of 5% serum and 400 ppm hard water with 10 minute contact time and found to be effective against the above noted viruses on hard, nonporous environmental surfaces.

>=6.0 Log ₁₀	<=0.5 Log ₁₀	С	6.5 Log10	
>=6.25 Log ₁₀	<=0.5 Log ₁₀	В		Vaccinia virus
>=6.25 Log ₁₀	<=0.5 Log ₁₀	Α	6.75 Log10	
>=5.75 Log ₁₀	<=05 Log ₁₀	C	6.25 Log10	
>=4.25 Log ₁₀	<=0.5 Log ₁₀	В		Transmissible Gastroenteritis virus
>=4.35 Log ₁₀	<=0.5 Log ₁₀	Α	4.75 Log10	
>=4.5 Log ₁₀	<=0.5 Log ₁₀	0	5.0 Log10	
>=4.0 Log ₁₀	<=0.5 Log ₁₀	В		Respiratory Syncytial virus ATCC VR-26
>=4.0 Log ₁₀	<=0.5 Log ₁₀	Þ	4.5 Log10	
>=5.0 Log ₁₀	<=0.5 Log ₁₀	0	5.5 Log10	
>=5.75 Log ₁₀	<=0.5 Log ₁₀	В		Pseudorabies virus
>=5.75 Log ₁₀	<=0.5 Log ₁₀	Α	6.25 Log10	
>=5.5 Log ₁₀	<=0.0 Log ₁₀	C	6.0 Log ₁₀	
>=6.0 Log ₁₀	<=0.0 Log ₁₀	В		Influenza A virus
>=6.0 Log _{t0}	<=0.0 Log ₁₀	A	6.5 Log ₁₀	
>≖4.25 Log ₁₀	<=0.0 Log ₁₀	C	4.75 Log ₁₀	
>=4.0 Log ₁₀	<=0.0 Log ₁₀	В		Infectious Bovine Rhinotracheitis virus
>=4.0 Log ₁₀	<=0.0 Log ₁₀	Α	4.5 Log ₁₀	
>=4.25 Log ₁₀	<=1.5 Log ₁₀	C		
>≃4.25 Log ₁₀	<=1.5 Log ₁₀	В	5.75 Log ₁₀	Human Immunodeficiency Virus type 1 (HIV 1)
>=4.25 Log ₁₀	<=1.5 Log ₁₀	Α		
>=4.0 Log ₁₀	<=0.5 Log ₁₀	C	4.5 Log ₁₀	
>=4.0 Log ₁₀	<=0.5 Log ₁₀	В		Human Coronavirus
>=4.0 Log ₁₀	<=0.5 Log ₁₀	А	4.5 Log ₁₀	
>=5.25 Log ₁₀	<=0.5 Log ₁₀	C	5.75 Log ₁₀	
>=5.5 Log ₁₀	<=0.5 Log ₁₀	В		Herpes Simplex Virus Type 2
>=5.5 Log ₁₀		Α	6.0 Log ₁₀	

Xtreme raw material Base was evaluated in the presence of 5% serum and 400 ppm hard water with 10 minute contact time and found to be effective against the above noted viruses on hard, nonporous environmental surfaces.

	Canine Parvovirus Type 2b	Test Organisms
	7.5 Log10	Dried Virus Control
Œ	Α	Sample
<=3.5 Log ₁₀	<=3.5 Log ₁₀	Result
>=4.0 Log ₁₀	>=4.0 Log ₁₀	Log Reduction

Xtreme raw material Base was evaluated in the presence of 5% serum and 400 ppm hard water with 10 minute contact time and found to be effective against the above noted viruses on hard, nonporous environmental surfaces.

Weekly Effluent Fecal Coliform Testing

			Coliform				
			Colonies Counted	x 100 /	mls of Sample Filtered	=	Colonies / 100 mls
				x 100 /	Blank	=	100 mis
0.40	Week:		10	x 100 /	0.10	=	
Kaw	Date:	2/28/09	21	x 100 /	· · · · · · · · · · · · · · · · · ·	=	10,000
FFF 1-Q	Operator:	_ 48L	49	x 100 /	0.25	=	<u> </u>
Raw EFF Untreated	Орегают.			, X 100 <i>1</i>	Avera		9.400
•							.,
Raw ? 100000 EFF Treated I myll			Coliform Colonies Counted	x 100 /	mls of Sample Filtered	==	Colonies / 100 mls
•	Oo.			x 100 /	1	=	0
David Long	Week:			x 100 /		=	0
700	Date:	2/23/09		x 100 /		=	0
Err	Operator:	M		x 100 /		=	
Treated					Avera	ge:	
1 mull							
717			Coliform				
			Colonies		mls of Sample		Colonies / 100
-			Counted	x 100 /	Filtered	=_	mis
	فعزان			x 100 /		===	
Raw 100	Week:		***************************************	x 100 /	5	==	
(66)	Date:	2/28/09		x 100 /		=	
tr.	Operator:	<u></u>		x 100 /	· · · · · · · · · · · · · · · · · · ·	=	
Raw 1000 Eff 3 Treated Small					Avera	ge:	C
- mall							
5 mg/			Coliform				
			Colonies		mls of Sample		Colonies / 100
-			Counted	x 100 /	Filtered	=	mls
	فالم			x 100 /		=	
7,27 1000	Week:		***************************************	x 100 /	5	=	
Raw 3 1000	Date:	2/28/09		x 100 /		=	
Ettail	Operator:	Mrz		x 100 /		=	
Treated 10 moll					Avera	ge:	<u> </u>
11/2							
10 m			Coliform				
(Colonies	400 1	mls of Sample		Colonies / 100
_			Counted	x 100 /	Filtered	<u>=</u>	mls
· 0	20 Pm			x 100 /		=	
Rawillo	_			x 100 /	5	=	
THE TO	Date:	2/25/03	phosphyson	x 100 /		=	
Charle M.	Operator:	ar		x 100 /		=	
Trem 11					Avera	ge:	
Treated 1	•						

Report Number 11-087-2030

Page 1 of 2

REPORT OF ANALYSIS

Mail to:

HEARTLAND SOLUTIONS INC

STEVE ROWLEY

626 VALLEY RIDGE CT GRAIN VALLEY MO 64029

For: (27016) HEARTLAND SOLUTIONS INC

(816)867-2054

Date Reported: 03/31/11 Date Received: 03/16/11

ACUTE TOXICITY ANALYSIS

Lab number: 1824580 Sample ID: XTEME MICROBIAL AGENT

	Level		Detection		Analyst-	Verified-
Analysis	Found	Units	Limit	Method	Date	Date
Ammoniacal Nitrogen	n.d.	mg/L	0.10	SM 4500-NH3 C	lkd-03/21	cmw-03/28
Ammoniacal Nitrogen	n.d.	mg/L	0.10	SM 4500-NH3 C	lkd-03/21	cmw-03/28
Total chlorine		mg/L	0.001	SM 4500-CLD	1km-03/17	cmw-03/28
Conductance		uS/cm	2	SM 2510 B	jdb-03/17	cmw-03/28
Total dissolved solids	348	mg/L	10	SM 2540C	jsa-03/18	cmw-03/28
Alkalinity (Total)		mg CaCO3/L	10	SM 2320 B	jdb-03/21	cmw-03/28
Tua P. promelas	< 200000		0.50	CALC	1km-03/25	cmw-03/28
Tua C. dubia	714,286		0.50	CALC	1km-03/25	cmw-03/28
LC50 P. promelas	> 0.0005		1.00	CALC	lkm-03/25	cmw-03/28
LC50 C.dubia	0.00014	%	0.00010	CALC	lkm-03/25	cmw-03/28

Notes:

n.d. - Not Detected.

For questions contact

Heather Ramig

Client Service Representative heather@midwestlabs.com (402)829-9891

The result(s) issued on this report only reflect the analysis of the sample(s) submitted. For applicable test parameters, Midwest Laboratories is in compliance with NELAC requirements. Our reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

Report Number 11-087-2030

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com

48 HOUR ACUTE TOXICITY TEST EPA-821-R-02-012 Non-renewal Static Serial Dilution

						,				
Report Num			mple II		_			scription		
11-087-2030			eartland	Solution	s Inc.	Co	lor: clear	; Odor: s	lightly so	рару
	OXICITY DAT			YE CI	Y 6780 0		-	T	10011	
•	omelas Ref				LC50: 0.			Date: 03		
C. du					LC50: 2.		_	Date: 03		
CONDITIONS					ilution W			Light; 8		
P.promelas	Age: 2 days				rt: 1440 3					10 3/19/11
C.dubia	Age: <24 hr				rt: 1440 3					3/19/11
	– 5PPM EFFL		1	1 IIIIe/1	Date Sam	pie .	Received	1: 1350 3	3/11	
CHEMISTRY	Parameter		Result	<u>t_</u>			Metho	d		
	Hardness		98	ma ea (CaCO ₃ /L		Calcula	ntion .		
	Conductivit	hv.	354	umhos/			EPA 12			
	Alkalinity	- 3	83	mg Ca(SM 23:			
	Residual Cl	nlorine		l mg/L	20311			00-CLD		
	Dissolved S		348	mg/L			SM 25			
	Ammonia (pre-fish)	< 0.1	mg/L			EPA 35	50.2		
	Ammonia (mg/L			EPA 35	50.2		
RESULTS:								# alive/2	20 tested	
		Init	tial	Fi	nal		Fi	sh	Fl	eas
	Dilution	DO	pН	DO	pН		24hr.	48hr.	24hr.	48hr.
	5 ppm	7.7	8.3	7.5	8.2		20	20	0	0
	4 ppm	7.9	-8.2	7.5	-8.2		20	20-	-0-	0
	3 ppm	8.0	8.2	7.4	8.2		20	20	0	0
	2 ppm	8.0	8.2	7.3	8.3		20	20	0	0
	1 ppm	8.0	8.2	7.4	8.3		20	20	20	17
	Control	8.0	8.2	7.5	8.3		20	20	20	20
FATHEAD MI	NNOW (P.pro	melas)			WATER I	SLE2	(C.duh	ia)		
LC50:	>.0005%				LC50:		.00014			
TUa:	<200,000				TUa:		714,28	6		
Method:	N/A				Method:		Two-P	oint Inter	polation	
Analyst				Lai	uer Ri	M	4	I	Date <u>3/28</u>	/11
Second Party	Reviewer		Name of the latest design of t	Olv	wer Ri aspeti u Ra	4		1	Date <u>3/28</u>	/11
Client Servic	es Represent	tative		eath	y fa	m	ġ_	I	Date <u>3/28</u>	<u>/11</u>

PDC Laboratories, Inc.

3278 N. Highway 67 - Florissant, MO 63033 (314) 432-0550 (800) 333-FAST (3278) - FAX (314) 432-4977

Stover, City of PO Box 370 Stover, MO 65078 Attn: Scott Beckmann

Date Received: 08/31/11 10:55

Report Date: 09/19/11 Customer #: 277228

Sample No: 1091895-01

Collect Date: 08/30/2011 14:20

Sample Description: Effluent

Matrix: Waste water

Parameters

Result

Qual

Analysis Date

Analyst

Method

WET test was subcontracted out. See attachment.

PDC Laboratories, Inc.

3278 N. Highway 67 - Florissant, MO 63033 (314) 432-0550 - (800) 333-FAST (3278) - FAX (314) 432-4977

Stover, City of PO Box 370 Stover, MO 65078 Attn: Scott Beckmann Date Received: 08/31/11 10:55

Report Date: 09/19/11 Customer #: 277228

Notes

This report shall not be reproduced, except in full, without the written approval of the laboratory.

PDC Laboratories participates in the following accreditation/certification and proficiency programs at the following locations. Endorsement by Federal or State Governments or their agencies is not implied.

PIA PDC Laboratories - Peoria, IL

NELAC Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230

Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications: Kansas (E-10338); Missouri (870); Wisconsin (998284430); Indiana (C-IL-040); Iowa (240) Wastewater Certifications: Arkansas (88-0677); Wisconsin (998284430); Iowa (240); Kansas (E-10335) Hazardous/Solid Waste Certifications; Arkansas (88-0677); Wisconsin (998284430); Iowa (240); Kansas (E-10335) UST Certification; Iowa (240)

SPM PDC Laboratories - Springfield, MO

EPA DMR-QA Program

STL PDC Laboratories - St. Louis, MO

NELAC Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS EPA Lab No. E-10389

Barbara 9 Pandillo

Certified by: Barb Pandolfo, Project Manager

4000 East Jackson Blvd. • Jackson, MO 63755 • 573-204-8817 • Fax 573-204-8818

REPORT OF ACUTE TOXICITY TESTING

Stover Southwest Lagoon
Outfall 001 (24 hr composite), AEC=100%
MO-0047058
EAS LOG# 1316318
August 31, 2011 through September 2, 2011

Tests performed by:

John P. Clippard / Chemical Analyst at Environmental Analysis South (EAS)
Kelly J. Ray / Biologist at Environmental Analysis South (EAS)
Sara C. Shields / Lab Supervisor - Chemist at Environmental Analysis South (EAS)
David F. Warren / Lab Director - Chemist at Environmental Analysis South (EAS)

- 1. Report Summation
 - 1.1. Data Summation
 - 1.2. Conclusion
- 2. Method Summation
 - 2.1. Test Conditions and Methods
 - 2.2. Potassium chloride Reference Salt Test
 - 2.2.1. Pimephales promelas data
 - 2.2.2. Ceriodaphnia dubia data
 - 2.3. Literature Cited
- 3. Raw Data Bench Sheets
 - 3.1. Initial observations (page 1)
 - 3.2. Zero hour Observations (page 1)
 - 3.3. Twenty-four (24) hour Observations (page 1)
 - 3.4. Forty-eight (48) hour Observations (page 1)
 - 3.5. Survival Data Table (page 2)
 - 3.6. Test Comments (page 3)
- 4. Chain of Custody
- 5. MO DNR "Whole Effluent Toxicity (WET) Test Report (Form 780-1899)

REPORT OF ACUTE TOXICITY TESTING

Stover Southwest Lagoon
Outfall 001 (24 hr composite), AEC=100%
MO-0047058
EAS LOG# 1316318
August 31, 2011 through September 2, 2011

1. REPORT SUMMATION:

1.1. Single Dilution Data Summation

	Pimephales promelas Acute Toxicity Test	Ceriodaphnia dubia Acute Toxicity Test
Survival in the Effluent at 48 Hours	100%	100%
Survival in the Reconstituted Control (RC) at 48 Hours	100%	100%
Survival in the Upstream Control (UC) at 48 Hours	100%	100%
Statistical Results Comparing the Survival Data of the Effluent with the Control (arc sine square root transformation)	No Significant Difference at alpha = 0.05	No Significant Difference at alpha = 0.05

^{*} Indicates a significant difference at alpha = 0.5 between effluent and control survival data.

Conclusion: The mortality observed with both species was determined not to be significantly different than that observed in the control sample. Based on these results the outfall passed the whole effluent toxicity test with both indicator species.

Approved by	Milds
•	Sara C. Shields, Chemist

4000 East Jackson Blvd. • Jackson, MO 63755 • 573-204-8817 • Fax 573-204-8818

REPORT OF ACUTE TOXICITY TESTING

Stover Southwest Lagoon
Outfall 001 (24 hr composite), AEC=100%
MO-0047058
EAS LOG# 1316318
August 31, 2011 through September 2, 2011

2. TEST METHOD SUMMARY

2.1. TEST CONDITIONS AND METHODS:

	Ceriodaphnia dubia:	Pimephales promelas:
Test duration:	48 hours	48 hours
Temperature:	24 - 26 degree Celsius	24 - 26 degree Celsius
Light quality:	Ambient laboratory illumination	Ambient laboratory illumination
Photoperiod:	16 hour light, 8 hours dark	16 hour light, 8 hours dark
Control Water:	Moderately Hard Reconstituted Water	Moderately Hard Reconstituted Water
Dilution Water:	Upstream Water - If unavailable or toxic, then control water will be used.	Upstream Water - If unavailable or toxic, then control water will be used.
Size of test vessel:	30 milliliters	250 milliliters
Volume of test solution:	15 milliliters	200 milliliters
Age of test organisms:	<24 hours	1 -14 days (all same age)
Number of organisms/test vessel:	5	10
Number of replicates/concentration:	4	4
Number of organisms/concentration:	20 .	40 for a single dilution test and 20 for a multiple dilution test
Feeding regime:	None (fed prior to test)	None (fed prior to test)
Aeration:	None	None
Test acceptability criterion:	90% or greater survival in controls	90% or greater survival in controls

The methodology used for the chemistry data was taken from the *Standard Methods for the Examination* of *Water and Wastewater*, 18th edition (1992). The exception was hardness, which was determined using a Hach EDTA titration test kit. The toxicity tests follow guidelines laid out in the permittee's NPDES permit and were conducted according to EPA approved methods (USEPA 2002).

All test organisms were cultured according to EPA approved methods (USEPA 2002). The *Ceriodaphnia dubia* and the *Pimephales promelas* were obtained from C-K Associates Inc. located in Baton Rouge, Louisiana and shipped overnight for use in the whole effluent toxicity test.

4000 East Jackson Blvd. • Jackson, MO 63755 • 573-204-8817 • Fax 573-204-8818

REPORT OF ACUTE TOXICITY TESTING

Stover Southwest Lagoon
Outfall 001 (24 hr composite), AEC=100%
MO-0047058
EAS LOG# 1316318
August 31, 2011 through September 2, 2011

2.2. REFERENCE TOXICITY TEST:

Environmental Analysis South performs monthly reference toxicity tests. The most recent reference test was initiated on August 3, 2011 using KCL Lot #41713. Following are the results:

2.2.1. **P. promelas -** 48 hr. Acute Test – LC_{50} = 1.049 g/l 95%CI (0.705-1.392 g/l)

EAS %CV = 16.4%

National Warning Limits (75th percentile) = 19%CV National Control Limits (90th percentile) = 33%CV

2.2.2. *C. dubia* - 48 hr. Acute Test – $LC_{50} = 0.451 \text{ g/l}$ 95%CI (0.295-0.607g/l)

EAS %CV = 17.3%

National Warning Limits (75th percentile) = 29%CV National Control Limits (90th percentile) = 34%CV

2.3. LITERATURE CITED:

- 1. APHA. 1992. Standard methods for the examination of water and wastewater, 18th Ed. American Public Health Association, Washington, D.C
- 2. USEPA. 2002. Methods for-measuring the acute toxicity of effluents and receiving waters to-freshwater and marine organisms, 5th Ed. EPA-821-R-02-012
- 3. USEPA 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System, (Table B-2). June 2000. EPA 833-R-00-003.

WHOLE EFFLUENT TEST conducted in accordance with US EPA 600/4-90/027 Fifth Edition October 2002

STEEN FACE C	0,000	1											
	nos javojs	west Lag	oon, Outrail U	Scient Meine: Stover Southwest Lagoon, Outrall 001, 24 nr composite									
NPDES NUMBER: MO-0047058	MO-004705	ec ec							-			-	
TYPE OF METHOD: single dilution, 48 hrs, PP & CD, AEC=100%	single dilutio	n, 48 hrs,	PP & CD, AE	C=100%									
DATE & TIME OF COLLECTION: 08/30/11 1420 hrs by Steve Holloway	08/30/11 14	20 hrs by S	Steve Hollowa	ły				Upstream: Gabriel Creek	Gabriel Cr	eek			
DATE & TIME OF SUBMISSION: 08/30/11 1055 hrs by UPS	08/30/11 10	55 hrs by t	JPS					Collected: 08/30/11 1440 hrs by S.H.	08/30/11 1	440 hrs by	S.H.		
INITIAL OBSERVATIONS DATE	DATE	TIME	ANALYST	QC LOT	QC EXP VALUE	INT EFFL INT UC	NT UC	INT RC			:		
LOG NUMBER / ID NUMBER						1316318	1316318A	RC4020					
US - Hq	08/31/11 1100 hrs	1100 hrs	scs	SB114 (8.8-9.2)	88.8	7.53	7.60	7.42					
TEMPERATURE °C RECEIVED		08/31/11 1100 hrs	scs	EAS 106		9	9	25					
SPECIFIC CONDUCTANCE umhos	08/31/11 1100 hrs	1100 hrs	scs	ERA506-010511(401-457)	439	518	519	248					
HARDNESS - ppm		08/31/11 1100 hrs	SCS	ERA P170-507(107-134)	120	200	160	80					
CHLORINE - ppm	08/31/11 1100 hrs	1100 hrs	SCS	tap water	+	<0.04	<0.04	<0.04					
DISSOLVED OXYGEN - ppm	08/31/11 1100 hrs	1100 hrs	SCS	cal@840		4.8	4.6	7					
TOTAL ALKALINITY - ppm	08/31/11 1600 hrs	1600 hrs	scs	ERA506-010511(60.1-71.9	8.89	194	188	64.3					
INITIAL AMMONIA - ppm	09/02/11 1018 hrs	1018 hrs	JPC	EAS #1981 (8-12)	10	0.485	0.192	<0.05					
TOTAL DISSOLVED SOLIDS -ppm													
0 HOUR OBSERVATIONS DATE	DATE	TIME	ANALYST	QC LOT	QC EXP VALUE	SC.	nc	100%	%05	25%	12.50%	6.25%	X %AEC
US - Hq	08/31/11 1200 hrs	1200 hrs	SCS	SB114 (8.8-9.2)	8.88	7.48	7.83	7.68					
TEMPERATURE °C	08/31/11 1200 hrs	1200 hrs	SCS	EAS 106		24.1	23.8	24.0					
SPECIFIC CONDUCTANCE umhos	- 1	08/31/11 1200 hrs SCS	SCS	ERA506-010511(401-457)	439	245	475	518					
DISSOLVED OXYGEN - ppm	08/31/11 1200 hrs		SCS	cal@840		6.8	8.3	8.4					
24 HOUR OBSERVATIONS - PP DATE		TIME	ANALYST	מכ רסב	QC EXP VALUE	RC	CC	100%	20%	25%	12.50%	6.25%	X %AEC
NS - Hd		09/01/11 1200 hrs SCS	SCS	SB114 (8:8-9.2)	8.91	7.14	7.96	7.88					
TEMPERATURE °C	09/01/11 1200 hrs		scs	EAS 106		24.9	24.9	24.9					
SPECIFIC CONDUCTANCE umhos	09/01/11 1200 hrs		scs	ERA506-010511(401-457)	431	257	494	528					
DISSOLVED OXYGEN - ppm	09/01/11 1200 hrs		scs	cal@840		6.3	5.7	5					
48 HOUR OBSERVATIONS - PP DATE		TIME	ANALYST	QC LOT	QC EXP VALUE	RC	nc	100%	20%	72%	12.50%	6.25%	X %AEC
∩S - Hd	09/02/11 1200 hrs	1	SCS	SB114 (8.8-9.2)	8,93	7.53	8.14	8.09					
(C								_					

24 HOUR OBSERVATIONS - CD DATE TIME ANALYST QC LOT	DATE T	IME	ANALYST	QC LOT	OC EXP VALUE	RC	nc	100%	%09	72%	12.50%		6.25% X %AEC
US - Hq	pH - SU 09/01/11 1200 hrs SCS	200 hrs	SCS	SB114 (8:8-9.2)	8.91	8.35	8.13	8.21					
TEMPERATURE °C 09/01/11 1200 hrs SCS	09/01/11	200 hrs	SCS	EAS 106		24.9	24.9	24.9					
SPECIFIC CONDUCTANCE umhos 09/01/11 1200 hrs SCS	09/01/11	200 hrs	SCS	ERA506-010511(401-457)	431	245	470	514					
DISSOLVED OXYGEN - ppm 09/01/11 1200 hrs SCS	09/01/11	200 hrs	scs	cal@840		6.4	6.1	6.2					
48 HOUR OBSERVATIONS - CD DATE TIME	DATE		ANALYST QC LOT	QC LOT	QC EXP VALUE	RC	nc	100%	20%	%57	12.50%	6.25%	6.25% X %AEC
US - Hq	pH - SU 09/02/11 1200 hrs SCS	200 hrs	SCS	SB114 (8.8-9.2)	8.93	8.47	8.36	8.41					
TEMPERATURE °C 09/02/11 1200 hrs SCS	09/02/11	200 hrs	scs	EAS 106		24.4	24.4	24.4					
SPECIFIC CONDUCTANCE umhos 09/02/11 1200 hrs SCS	111/20/60	200 hrs	SCS	ERA506-010511(401-457)	493	279	492	200					
DISSOLVED OXYGEN - ppm 09/02/11 1200 hrs SCS	09/02/11	200 hrs	scs	cal@840		6.2	6.1	5.9					
FINAL AMMONIA - ppm				EAS #2375 (8-12)									

100% 8.09 24.4 544 5.6

> SB114 (8.8-9.2) EAS 106

TEMPERATURE °C

SPECIFIC CONDUCTANCE umhos DISSOLVED OXYGEN - ppm FINAL AMMONIA - ppm

24.4 518 5.8

24.4 279 6.3

493

ERA506-010511(401-457) cal@840

09/02/11 1200 hrs SCS 09/02/11 1200 hrs SCS 09/02/11 1200 hrs SCS

EAS #2375 (8-12)

Date: 09/08/2011

Approved by: The Line

WHOLE EFFLUENT TEST conducted in accordance with US EPA 600/4-90/027 Fifth Edition October 2002

EAS LOG# 1316318 Stover Southwest Lagoon, Outfall 001, 24 hr composite

Analyst 1: DFW Analyst 2: KJR Analyst 3: SCS Time Test Began: 1200 hrs Time Test Finished: 1200 hrs August 31, 2011 September 2, 2011 Date Test Began: Date Test Finished:

X% AEC ALIVE ALIVE 6.25% HATCH NUMBER: 8112 c-k 12.50% ALIVE ALIVE 25% ALIVE 20% 6 days 10,10,10,10 10,10,10,10 10,10,10,10 ALIVE 100% AGE: 10,10,10 10,10,10 10,10,10,10 ALIVE ဌ 24 HR-PP 10,10,10,10 48 HR-PP 10,10,10,10 10,10,10,10 ALIVE ည 0 HR-PP PERIOD P. prometas (PP)

RC UC 100% 50% 25% 6.25% X% AEC PERIOD ALIVE									
ALIVE ALIVE <th< th=""><th></th><th>RC</th><th>OUC</th><th>100%</th><th>20%</th><th>25%</th><th>12.50%</th><th>6.25%</th><th>Y%, AEC</th></th<>		RC	OUC	100%	20%	25%	12.50%	6.25%	Y%, AEC
5,5,5,5 5,5,5,5 5,5,5,5 5,5,5,5 5,5,5,5 5,5,5,5	PERIOD		ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	AI IVE	AI IVE
5,5,5,5 5,5,5 5,5,5,5 5,5,5	0 HR-CD	u,	5,5,5,5	5.5.5.5					ALIVE
5,5,5,5 5,5,5	24 HB-CD	u u	7 7 7 7	1 0 0					
5,5,5,5 5,5,5]	0,0,0,0	0,0,0,0					
	48 HR-CD	5	5,5,5,5	5,5,5,5					

HATCH NUMBER: 2373 c-k

hours

AGE: <24

Ceriodaphnia dubia (CD)

Approved by; Allier

WHOLE EFFLUENT TEST conducted in accordance with US EPA 600/4-90/027 Fifth Edition October 2002

Stover Southwest Lagoon, Outfall 001, 24 hr composite	EAS#: 1316318 Notes & Comments
Outfall 001 and upstream control aerated prior to test initiation due to low DO upon arrival to the lab	n due to low DO upon arrival to the lab

Date: 04/08/2017

Prepared by: All ill

11453G

nc. – St. Louis CHAII

PDC Laboratories, Inc. – St. Louis 3278 N. Highway 67 (Lindbergh) Florissant, MO 63033

www.pdclab.com

CHAIN OF CUSTODY RECORDPhone (314) 432-0550 or (314) 921-4488
Fax (314) 432-4977

State where samples collected

(Instructions/Sample Acceptance Policy on Reverse)

ALL SHADED AREAS MUST BE COMPLETED BY CLIENT (PLEASE PRINT)

	PROJECT NUMBER	P.O. NUMBER	MEANS SHIPPED	7 (°)	A Control of the Cont	(FOR LAB USE ONLY)
	PHONE NUMBER	FAX NUMBER	EMAIL ADDRESS			1000IN #
			MATRIX TYPES: WW-WASTEWATER DW-DRINKING WATER GW-GROUND WATER			LOGGED BY:
			WWSL-SLUDGE NAS-SOLID L'CHT-LEACHATE NAT-NONAQUEOUS SORI-SOLID	口目		TEMPLATE:
2 SAVIPLE DESCRAPTION AS YOU WANT ON REPORT	CONTECTED	This is the Coulette	:-c MATRIX Buttle :- TYPE Count	Mi		Le end racid=
EAllyant	1108.8	× @:/>/		×	316318	600
Dunskream	8.30.11	X 05:71		×	316318-	323 7.9
ll.			or of the contract of the cont	te tripopi popi	The second temporaries will be recognized upon cooping at the last. Ruinitialing this area will feducate	rapitest
UND TIME (RUSH TAT IS SUBJECT (8-10 Bus. Days) RUSH (5 Bus. Days)	TO PDC LABS APPROVAL AND SURC Fastrak _{to} (3 Bus. Days) 1-2 Bus. Days	Jay	I ne sample temperature will be impassured that the lab notify you, before proceeding trange of 0.146.0°C. By not initialing this air recardless of the sample temperature,	with analysis, if the ea, you allow the	The sample temperature will be integrated upon recept at the rate. By integring any solution that the lab notify you, before proceeding with analysis, if the sample temperature is outside of the range of 0.14.6.0°C. By not initialing this area, you allow the lab to proceed with analytical testing recardless of the sample temperature.	of the ting
RESULTS BY: E-MAIL FAX PHONE CALL PHONE/FAX# IF DIFFERENT	IFFERENT FROM ABOVE					
	TIME 7	RECEIVED BY:	DATE PASO-II	TIME 7.5	COMMENTS	COMMENTS (FOR LAB USE ONLY)
RELINGUISHED BY: (SIGNATURE)		RECEIVED BY:	DATE	TIME	SAMPLE TEMPERATURE UPON RECEIPT	Td
REZINGUISHER BY: (SIGNATURE)	DATE TIME	RECEIVED BY:	OATE . 3/21/11	TIME	CHILL PROCESS STARTED PRIOR TO RECEIPT SAMPLES(S) RECEIVED ON ICE PROCES ROOTLES RECEIVED IN GOOD CONDITION OF THE TOTAL HAT YOU HAT	RECEIPT YORN YORN YORN YORN YORN
RELINQUISHED BY; (SIGNATURE)	DATE TIME	RECEIVED BY:	DATE	SES	DOTTES THEED WITHIN MOLD TWEED WAS AMPLES RECEIVED WITHIN HOLD TWEED (EXCLUDES TYPICAL FIELD PARAMETERS) DATE AND TME TAKEN FROM SAMPLE BOTTOM	

Thank you for using PDC Laboratories, Inc. Locations in Peoria, IL; St. Louis, MO; and Springfield, MO

PAGE __OF_

MISSOURI DEPARTMENT OF NATURAL RESOURCES

WATER PROTECTION PROGRAM - P.O. BOX 176, JEFFERSON CITY MO, 65102

WHOLE EFFLUENT TOXICITY (WET) TEST REPORT

(TO BE ATTACHED TO WET TESTS FOR SUBMISSION TO THE REGULATORY AUTHORITY)

PART A - TO BE COMPLETED II	N FULL BY PERMITT	BE			ergerig i der film der geringen i der eine der geringen der geringen i der geringen der geringen der gestellt Geringen gegennte geringen der geringen der geringen der geringen der geringen der geringen der gestellt der g Geringen geringen der gegennte geringen der geringen der geringen der geringen der geringen der geringen der g
Stover Southwest Lagoon			DATE & TIME COLLECTED EFFLUENT 08/30/11 1420	LIDSTDE	AM 08/30/11 1440
PERMIT NUMBER			PERMIT OUTFALL NUMBER	UPSIRE	AIVI
MO-0047058			Outfall # 001		
COLLECTOR'S NAME Steve Holloway					
RECEIVING STREAM COLLECTION SITE AND DI	ESCRIPTION	······································			
Gabriel Creek	200mm non				
PERMIT ALLOWABLE EFFLUENT CONCENTRATION	ON (AEC)	· · · · · · · · · · · · · · · · · · ·	EFFLUENT SAMPLE TYPE (CHECK ONE)		· · · · · · · · · · · · · · · · · · ·
100%			24HR COMPOSITE GRA	в Цот	THER
SAMPLE NUMBER EFFLUENT 1316318	UPSTREAM 13163	18A	UPSTREAM SAMPLE TYPE (CHECK ONE) 24HR COMPOSITE GRA	в 🗆 от	THER
PERMITTED EFFLUENT DAILY MAXIMUM LIMITA' CHLORINE		ng/L	PERMITTED EFFLUENT DAILY MAXIMUM LIMITAL AMMONIA	TION FOR	mg/L
			RATORY		
PERFORMING LABORATORY			TEST TYPE		
Environmental Analysis South,	Inc.		Acute Static Non renew	al Test	Single Dilution
FINAL REPORT NUMBER MO_1316318			TEST DURATION 48 hour		
DATE OF LAST REFERENCE TOXICANT TESTING August 3, 2011	3		TEST METHOD Methods for Measuring the Acute Toxicity of Efflue Marine Organisms	nts and Receiv	ring Waters to Freshwater and
DATE AND TIME SAMPLES RECEIVED AT LABOR	ATORY		TEST START DATE AND TIME		NATE AND TIME
08/31/11 1055 hrs by UPS			08/31/11 1200 hrs	09/02/1	1 1200 hrs
SAMPLE DECHLORINATED PRIOR TO ANALYSIS' EFFLUENT	? □YES 🙀 NO UPSTREAM		TEST ORGANISM #1 AND AGE Pimephales promelas 6 days		NISM #2 AND AGE Dhnia dubia < 24 hours
SAMPLE FILTERED PRIOR TO ANALYSIS?	YES 🔀 NO		90% OR GREATER SURVIVAL IN SYNTHETIC CONTROL? YES NO	DILUTION W	ATER USED TO ACHIEVE AEC
FILTER MESH SIEVE SIZE ² None			EFFLUENT ORGANISM #1 % MORTALITY AT AEC 0 %	EFFLUENT C	ORGANISM #2 % MORTALITY AT AEC
SAMPLE AERATED DURING TESTING?	s 💢 NO		UPSTREAM ORGANISM #1 % MORTALITY 0 %	UPSTREAM 0 %	ORGANISM #2 % MORTALITY
phadjusted? YES NO EFFLUENT	UPSTREAM		TEST RESULT AT AEC FOR ORGANISM #1 PASS FAIL		LT AT AEC FOR ORGANISM #2
MINIMUM REQUIRED ANALYTICA	AL RESULTS FOR T	HE 100% EFF			The state of the s
PARAMETER	RESULT		METHOD		WHEN ANALYZED
Temperature °C	6	SM18 2550	B stored at 4 degree C until tes	08/31/11 1100 hrs	
pH Standard Units	7.53	SM18 4500	-Н В	08/31/11 1100 hrs	
Conductance µMohs	518	SM18 2510	В	08/31/11 1100 hrs	
Dissolved Oxygen mg/L	4.8	SM18 4500	-O G		08/31/11 1100 hrs
Total Residual Chlorine mg/L	<0.04	SM18 4500	-CI G		08/31/11 1100 hrs
Unionized Ammonia mg/L	0.485x0.02=0.010	SM18 4500	-NH3 F @ 25 degree C		09/02/11 1018 hrs
*Total Alkalinity mg/L	194	SM18 2320	В		08/31/11 1600 hrs
*Total Hardness mg/L	200	SM18 2340	С		08/31/11 1100 hrs
*Recommended by USEPA guidance	ce, not a required and	alysis.			
Samples shall only be filtered if Filters shall have a sieve size of			that may be confused with, or attac	k, the tes	t organisms.

WHOLE EFFLUENT TOXICITY (WET) TEST REPORT

(TO BE ATTACHED TO WET TESTS FOR SUBMISSION TO THE REGULATORY AUTHORITY)

PARAMETER	RESULT	METHOD	WHEN ANALYZED
Temperature °C	6	SM18 2550B stored at 4 degree C until test setup	08/31/11 1100 hrs
pH Standard Units	7.60	SM18 4500-H B	08/31/11 1100 hrs
Conductance µMohs	519	SM18 2510B	08/31/11 1100 hrs
Dissolved Oxygen mg/L	4.6	SM18 4500-O G	08/31/11 1100 hrs
Total Residual Chlorine mg/L	<0.04	SM18 4500-CI G	08/31/11 1100 hrs
Unionized Ammonia mg/L	0.192x0.02<0.010	SM18 4500-NH3 F @ 25 degree C	09/02/11 1018 hrs
*Total Alkalinity mg/L	188	SM18 2320B	08/31/11 1600 hrs
*Total Hardness mg/L	160	SM18 2340 C	08/31/11 1100 hrs

PRELIMINARY TEST ACCEPTABILITY MATRIX (FOR USE BY PERMITTEE IN DETERMINING TEST VALIDITY)

PERMIT ALLOWABLE EFFLUENT CONCENTRATION (AEC): As indicated on permit. Test is invalid otherwise.

EFFLUENT SAMPLE TYPE: As indicated on permit. Test is invalid otherwise.

TEST TYPE: Acute Static Non-Renewal Test or other as indicated on permit. Test is invalid otherwise.

TEST DURATION: Forty-eight (48) hours or as indicated on permit. Test is invalid otherwise.

TEST ORGANISMS: As indicated on permit. Test is invalid otherwise.

DILUTION WATER USED TO ACHIEVE AEC: Upstream receiving water required if available.

TEST METHOD: The only acceptable method is the *most current edition* of <u>Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms</u>, or other as specifically assigned by EPA for determining NPDES compliance. Test is invalid otherwise.

TEST START DATE & TIME: Unless otherwise specified in writing by EPA, if >36 hours lapse between collection and initiation, test is invalid.

FILTER MESH SIEVE SIZE: Unless otherwise specified in writing by EPA, if sieve size is smaller than 60 microns, test is invalid.

90% OR GREATER SURVIVAL IN LABORATORY CONTROL(S) (Y/N): If NO, test is invalid.

A STATE OF THE STA		i i i i i i i i i i i i i i i i i i i		
PARAME	TER	RESULT	NOTES	WHEN ANALYZED
Temperatu	re °C	0 - 6	Unless received by the laboratory on the same day as collected, values outside this range invalidate the test.	Upon receipt

³ Where no upstream control is available, enter results from laboratory or synthetic control.

Report Number 12-045-2066

Page 1 of 4

13611 "B" Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402 334-912)

www.midwestlabs.com
REPORT OF ANALYSIS

Mail to: HEARTLAND SOLUTIONS INC

STEVE ROWLEY

626 VALLEY RIDGE CT GRAIN VALLEY MO 64029 For: (27016) HEARTLAND SOLUTIONS INC

(816)867-2054

Date Reported: 02/16/12 Date Received: 02/02/12 Date Sampled: Not Supplied Time Sampled: Not Supplied

ACUTE TOXICITY ANALYSIS

Lab number: 1950753 Sample ID: EXTREME MIC-FORMULA XM 100

	Level		Detection		Analyst-	Verified-
Analysis	Found	Units	Limit	Method	Date	Date
Ammoniacal Nitrogen	n.d.	mg/L	0.10	SM 4500-NH3 C	1kd-02/09	cmw-02/14
Ammoniacal Nitrogen	n.d.	mg/L	0.10	SM 4500-NH3 C	1kd-02/09	cmw-02/14
Total chlorine	n.d.	mg/L	0.001	SM 4500-CLD	1km-02/07	cmw-02/14
Conductance		uS/cm	2	SM 2510 B	jdb-02/07	cmw-02/14
Total dissolved solids	208	mg/L	10	SM 2540C	jsa-02/08	cmw-02/14
Alkalinity (Total)		mg CaCO3/L	10	SM 2320 B	jdb-02/08	cmw-02/14
Tua P. promelas	< 100000			CALC	1km-02/13	cmw-02/14
Tua C. dubia	434,783	NA	0.50	CALC	1km-02/13	cmw-02/14
LC50 P. promelas	> .001		1.00	CALC	lkm-02/13	cmw-02/14
LC50 C.dubia	n.d.	%	1.00	CALC	1km-02/13	cmw-02/14

Notes:

n.d. - Not Detected.

For questions contact

Heather Ramig

Client Service Representative heather@midwestlabs.com (402)829-9891

The result(s) issued on this report only reflect the analysis of the sample(s) submitted. For applicable test parameters, Midwest Laboratories is in compliance with NELAC requirements. Our reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com

Report Number
12-045-2066

48 HOUR ACUTE TOXICITY TEST EPA-821-R-02-012 Non-renewal Static Serial Dilution

Report Number 12-045-2066	: Lab # 19507	53 He	mple II eartland O Resol	Solutions	s Inc			scription ; Odor: s	: lightly so	ару
STANDARD TOXI	CITY DAT.									
P. promei	as Refer	rence T	oxicant	KC1	LC50: 0.	961	g/L	Date: 01	/2012	
C. dubia					LC50: 1.			Date: 01		
CONDITIONS:	25°C±1	l°C	Moderatel	y Hard Synt	thetic Dilutio	n Wa	iter 1	6hrs. Light;	8hrs. Dark (0 50-100 ft-
P.promelas Ag	e: 2 days	Tim	e/Date	Test Star	rt: 1230 2	2/7/1	2 Ti	me/Date	End: 11	40 2/9/12
	e: <24 hrs			Test Star	rt: 1230 2	2/7/1	2 T i	ime/Date	End: 11	40 2/9/12
Time/Date Samp			15/08		Time/Da	te S	ample R	eceived:	1228 2/2	/12
CHEMISTRY - 10		UENT:								
<u>Pa</u>	<u>ırameter</u>		Resul	<u>t_</u>			Metho	<u>d</u>		
H	ardness		103	mø ea (CaCO ₃ /L		Calcula	ation		
	onductivity		342	umhos/			EPA 12			
	kalinity		84	mg Ca(SM 23			
	sidual Chl	orine		l mg/L				00-CLD		
Di	ssolved So	olids	208	mg/L			SM 25	40C		
Aı	nmonia (pi	re-fish)	< 0.1	mg/L			EPA 3	50.2		
Aı	nmonia (po	ost-fish	< 0.1	mg/L			EPA 3:	50.2		
RESULTS:				Ü				# alive/2	20 tested	
		Init	ial	Fi	nal		Fi	sh	Fle	eas
	ilution	DO	pН	DO	pН		24hr.	48hr.	24hr.	48hr.
1	0 ppm	8.6	8.2	7.8	8.1		20	20	0	0
	7 ppm	8.6	8.2	7.4	8.2		20	20	0	0
	5 ppm	8.6	8.2	7.8	8.2	-	20	20	0	0
	3 ppm	8.6	8.2	7.3	8.2		20	20	10	7
	Control	8.7	8.3	7.7	8.2		20	20	20	20
FATHEAD MINNO	NV (D nuor	nalas)			WATER 1	Cr r	. (C dub	;a)		
	001%	neius)			LC50:	r Lr.	.00023			
	00,000				TUa:		434,78			
Method: N/					Method:			oint Inter	nolation	
Tricellott.	2 1			. 1			1 110-1	onit mici	polation	
Analyst			- 10	Zai	nerth	M	4	I	Date <u>2/14</u>	/12
Second Party Re	viewer			Olv	assebi	119		I	Date <u>2/14</u>	/12
Client Services F	Representa	ntive	<u></u>	eath	is fa	m	ġ	I	Date <u>2/14</u>	<u>/12</u>

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com

Report Number
12-045-2066

48 HOUR ACUTE TOXICITY TEST EPA-821-R-02-012 Non-renewal Static Serial Dilution

Report Num 12-045-2066		b #: 50753	Sample ID Heartland Xtreme Mi	Solution			mple De			papy
STANDARD 7	TOXICITY D	ATA:		***************************************						
			e Toxicant	: KCl	LC50: 0	961	g/L	Date: 01	1/2012	
C. du			e Toxicant					Date: 0		
CONDITIONS		°C±1°C			nthetic Dilutio		_			@ 50-100 ft-e
P.promelas	Age: 2 day	VS	Time/Date							40 2/9/12
C.dubia	Age: <24		Γime/Date ′							40 2/9/12
Time/Date S					Time/Da					
CHEMISTRY							1,			
	Paramete		Resul	t			Metho	d		
	Handaas				C-CO /I					
	Hardness	.: 4	103 342	mg eq umhos	CaCO ₃ /L		Calcula			
	Conductiv		342 84				EPA 1			
	Alkalinity Residual			mg Ca	ICO ₃ /L		SM 23	20B 00-CLD		
	Dissolved			l mg/L mg/L			SM 45			
	Ammonia			mg/L			EPA 3.			
			(\sin) < 0.1 (\sin) < 0.1	mg/L			EPA 3			
RESULTS:	Allillollia	(post-	(1511) <0.1	mg/L			EFA 3.		20 tested	
ESCLIS.			Initial	T.	inal		F	sh		eas
	Dilution			DO	рН		24hr.	48hr.	24hr.	48hr.
	10 ppm			7.8	8.1	1	20	20	0	0
	7 ppm	8.6		7.4	8.2		20	20	0	0
	5 ppm	8.6		7.8	8.2		20	20	0	0
	3 ppm	8.6		7.3	8.2		20	20	10	7
	Control			7.7	8.2		20	20	20	20
	Control	0.7	0.5	7.7	0.2	J	20	20	20	20
FATHEAD M	INNOW (Pr	romolo	(e)		WATER 1	Fr E	s (C dub	ia)		
LC50:	>.001%	omen	13)		LC50:	C LAIS	.00023	,		
TUa:	<100,000				TUa:		434,78			
Method:	N/A				Method:			oint Inter	nolation	
ivaccinoti.	14/21			, ,				Onit inter	polation	
Analyst				Xa	merti	M	is]	Date <u>2/14</u>	/12
				10						
Second Part	y Reviewer			Elv	aspet	un S		_ 1	Date <u>2/14</u>	<u>-/12</u>
Client Service	ces Represe	ntative	· _ Ø	east	werRi Taspebi hy fa	m	ġ_	ı	Date <u>2/14</u>	<u>/12</u>

rt Number	Analysis D							Ana	•	5-7269-44	
5-2066 laph	nia 48-h Acute S	urvival Te	st						Midv	vest Labor	ratoi
Endpoint		An	alysis Type		Sample	Link C	ontrol Link	Date A	nalyzed	Version	
48h Propor	tion Survived	Lin	ear Interpola	ition	09-6913	1-1489 09	9-6913 - 1489	13 Feb	-12 10:24 AM	CETISv1	.1.2
Linear Inte	rpolation Option	\$									
X Transfor				Resamples			lethod				
Linear	Linear	579	951	200	Yes	1	wo-Point Int	erpolation			
Test Accer	tability										
Attribute				TAC Range	Overla		ision				
Control Res	ponse	1	· · · · · · · · · · · · · · · · · · ·	0.9 - NL	Yes	Pas	ses accepta	bility criter	ia		
Point Estin	nates										
% Effect		95% LCL	95% l								
50	0.000230769	0.0001282	205 0,000	415385							
Data Summ	іагу			Calcul	ated Variate	e(A/B)					
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SE	SD	Α	В		
0	Dilution Water	4	1.00000	1.00000	1.00000	0.00000	0.00000	20	20		
0.0003		4	0.35000	0.00000	0.80000	0.06972		7	20		
0.0005		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	20		
0.0007		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	20		
0.001		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	20		
Data Detail											
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	R
0	Dilution Water	1.00000		1.00000	1.00000						
0.0003	•	0.00000		0.40000	0.80000						
0.0005		0.00000		0.00000	0.00000						
0.0007		0.00000		0.00000	0.00000						
Graphics		0.00000	0.00000	0.00000	0.00000						
Grapines											
1.	0.									•	
- 0.	9]\								no.		
,ĕ 0.	8 \										
∫ 0.	거 \										
S u 0.	e										
₽ 0.											
10d0	4 \	•									
Pro											
48h Proportion Survived	1 \										
	1										
^											
0. 0.	1 \										

5/4/2020

To- Ecotiv Clean (Purgo formally Xtreme)- Yuri Ratner

Microbiological Test -

Chemical disinfectants and antiseptics - Quantitative carrier test For the evaluation of bactericidal and fungicidal activity for instruments used in the medical and food areas

1. Standard:

The test was conducted based on Israeli Standard 1944, BS EN 14561 "Evaluation of bactericidal activity" and AAMI TIR 12 (2010).

Laboratory Number: 20034032

Sample description: Disinfection spray- Purgo formally Xtreme solution (60 ml + 3.8 liter water – 2oz/1 gallon)

Date sample received: 22/3/2020

Date Tested: 29/03/2020

Test Purpose:

This test was conducted in order to define the anti microbial effectiveness of the disinfectant preparation (PURgo formally Xtreme) for surface disinfection.

Inoculation:

- 1.1 Stainless steel surfaces (4/4cm) were sterilized by steam.
- 1.2 The surfaces were inoculated with the following microorganisms (four surfaces for each microorganism) –

Staphylococcus aureu	s ATCC 6538					
Pseodomonas aerugir	nosa ATCC 9027					
Escherichia coli	ATCC 8739					
Aspergillus niger	ATCC 16404					
Enterococcus faecalis	ATCC 51299					
Lactobacillus plantrarum ATCC 14917						
Salmonella typhimuri	um ATCC 14028					
Enterobacter aerogen	nes ATCC 13048					
Candida albicans	ATCC 10231					

Page 1 of 4

Remarks:

- 1. The laboratory operates under organized working procedures which correlate to the international standard ISO/IEC 17025 in those disciplines where accreditation has been granted.
- 2. The microbiological tests are within the recognition framework of the Ministry of Health as published in the registrations.
- 3. The results are related only to the tested sample.
- 4. This document may be referred to in its entirety, and no part may be quoted or copied to other documents.
- 5. Sampling was provided by and is the sole responsibility of the customer.
- 6. The Israel Laboratory Accreditation Authority is not responsible for the test results.
- 7. The valid results are those of the most updated report.

Saccharomyces cerevisiae ATCC 51299 Listeria monocytogenes ATCC 19115

The bacterial suspensions were diluted using soil (ATS - containing Proteins Healthmark (MI, US)) in order to give a final concentration of Bacteria of 10^5 - 10^6 per/surface (about 100 µl from each suspension was added to the soil according to cell turbidity).

- 1.3 One surface was not inoculated negative control.
- 1.4 The surfaces were left to dry in biohazard hood for 30 minutes.

2. Test Procedure:

- 2.1 Two surfaces before disinfection and cleaning for each microorganism were placed aseptically into sterile cups. 100 ml were added to each sample (Neutralizing solution lot 16378) and vortexed for 1 minute and then the diluted sample was plated according to the pour plate technique using warm TSA (lot 816) or SDA (lot 816) or APT (819).
- 2.2 The plates were incubated for 72 hours at 30-35°C or 120 hours at 20-25 °C for yeasts and moulds. After incubation of the test plates, the Microorganisms were counted on each plate.
- 2.3 The remaining surfaces (two for each microorganism) were subjected to disinfection according to manufacturer's instructions (contact for 15 seconds according to manufactures instructions). One surface after disinfection was put into cups and 0.1 ml of Neutralizing solution was spread on each surface. The surfaces were then diluted with 10 ml (BPS+1% Tween 80 lot 16378) and vortexed for 1 minute.
- 2.4 Then the eluent was plated in the pour plate technique using TSA or SDA or APT.
- 2.5 The plates were incubated as defined in 2.1 and then the microbial count was determined per surface.

Page 2 of 4

Remarks:

- 1. The laboratory operates under organized working procedures which correlate to the international standard ISO/IEC 17025 in those disciplines where accreditation has been granted.
- 2. The microbiological tests are within the recognition framework of the Ministry of Health as published in the registrations.
- 3. The results are related only to the tested sample.
- 4. This document may be referred to in its entirety, and no part may be quoted or copied to other documents.
- 5. Sampling was provided by and is the sole responsibility of the customer.
- 6. The Israel Laboratory Accreditation Authority is not responsible for the test results.
- 7. The valid results are those of the most updated report.

3. Results:

Bacteria/Yeast/Mould	Before disinfection CFU/surface	After disinfection CFU/surface
P. aeruginosa ATCC 9027	8,600,000 9,000,000	60 50
S.aureus ATCC 6358	3,300,000 4,000,000	<10 <1
E.coli ATCC 8739	2,800,000 3,000,000	8 <10
Aspergillus niger ATCC 16404	3,400,000 4,000,000	380 42
Enterococcus faecalis ATCC 51299	3,600,000 4,000,000	260 31
Lactobacillus plantrarum ATCC 14917	2,800,000 3,000,000	<10 <1
Salmonella typhimurium ATCC 14028	16,400,000 15,000,000	360 56
Enterobacter aerogenes ATCC 13048	14,600,000 15,000,000	260 32
Saccharomyces cerevisiae ATCC 51299	2,900,000 3,000,000	160 260
Listeria monocytogenes ATCC 19115	8,300,000 10,000,000	<10 <1
Candida albicans ATCC 10231	18,600,000 20,000,000	30 80
NC	<10, <10	

Page 3 of 4

Remarks:

- 1. The laboratory operates under organized working procedures which correlate to the international standard ISO/IEC 17025 in those disciplines where accreditation has been granted.
- 2. The microbiological tests are within the recognition framework of the Ministry of Health as published in the registrations.
- 3. The results are related only to the tested sample.
- 4. This document may be referred to in its entirety, and no part may be quoted or copied to other documents.
- 5. Sampling was provided by and is the sole responsibility of the customer.
- 6. The Israel Laboratory Accreditation Authority is not responsible for the test results.
- 7. The valid results are those of the most updated report.

4. Conclusion:

According to the test results, the disinfection using Ecotiv Clean disinfectant spray for 10 minutes in the presence of organic soil was able to reduce 4 magnitudes for *A.niger*, *E.fecalis* and *S.cerevisiae*, 5 -6 magnitudes for *P.aeruginosa*, *Candida albicans*, *E.coli*, *L.monocytogenes*, *L.plantarum*, *S.typhimurium*, *E.aerogenes* and *S.aureus* (at least 99.99% from the inoculated microorganism).

*******End	of Test	: Results******	******
------------	---------	-----------------	--------

Cressional Manager licrobial Labratory

Authorized Signature:

Preformed by:____

אין הון

Page 4 of 4

Remarks:

- 1. The laboratory operates under organized working procedures which correlate to the international standard ISO/IEC 17025 in those disciplines where accreditation has been granted.
- 2. The microbiological tests are within the recognition framework of the Ministry of Health as published in the registrations.
- 3. The results are related only to the tested sample.
- 4. This document may be referred to in its entirety, and no part may be quoted or copied to other documents.
- 5. Sampling was provided by and is the sole responsibility of the customer.
- 6. The Israel Laboratory Accreditation Authority is not responsible for the test results.
- 7. The valid results are those of the most updated report.

